Aller au contenu principal
Accueil

AFRIMATH

  • Séminaires AFRIMath
  • Membres
  • Conférences
  • Publications
  • Actualités
  • Partenaires
  • Contact
  • Devenir membre
  • Logos AFRIMath

Fields generated by sums and products of singular moduli: the primitive element problem

Bernadette Faye
Université Gaston Berger à Saint Louis, Sénégal
Séminaire Théorie des Nombres et Théorie de l’Information
ven 19/11/2021 - 13:00 ven 19/11/2021 - 13:45
Abstract_Bernadette.pdf (90.16 Ko)

A singular modulus is the j-invariant of an elliptic curve with complex multiplication. Given a singular modulus x we denote by \Delta_x the discriminant of the associated imaginary quadratic order. We denote by h(\Delta) the class number of the imaginary quadratic order of discriminant \Delta. Recall that two singular moduli x and y are conjugate over Q if and only if \Delta_x = \Delta_y , and that all singular moduli of a given discriminant \Delta form a full Galois orbit over Q. In particular, [Q(x) : Q] = h(\Delta x). Here, we show that the field Q(x, y), generated by two singular moduli x and y, is generated by their sum x + y, unless x and y are conjugate over Q, in which case x + y generates a subfield of degree at most 2. We obtain a similar result for the product of two singular moduli. Futhermore, we fix a rational number \alpha \neq 0, \pm 1 and show that the field Q(x, y) is generated by x + \alpha y, with a few exceptions occurring when x and y generate the same quadratic field over Q. These are the results from my collaborations with Antonin Riffault, Yuri Bilu and Huilin Zhu.

Activités à venir

On b-Repdigits as products or sums of Fibonacci, Pell, Balancing, and Jacobsthal Numbers

Chèfiath Adegbindin

Université d’Abomey-Calavi, Benin

Séminaire Théorie des Nombres et Théorie de l’Information

le 21/07/2025
de 17:00 à 18:00
Une approche de modélisation semi-markovienne fondée et guidée par les données. Un exemple sur le traitement des données de Covid-19 à Madagascar.

Angelo RAHERINIRINA

Université de Fianarantsoa

Séminaire Probabilités et Statistique

le 24/07/2025
de 14:00 à 15:00

Partenaires

  • Nantes Université
  • CNRS
  • LMJL
Contact Mentions legales