Some Combinatorial Geometry of Lattice Points of the Standard 3-Simplex Δ_3 .

Praise Adeyemo Department of Mathematics University of Ibadan Nigeria.

Abstract: By associating certain discrete objects $C^3_{(3,r)_{r\geq 1}}$ with Grassmannians $\operatorname{Gr}(3,3+r)_{r\geq 1}$, we study the geometry of the lattice points of dilations $r\Delta_3$ of the standard 3-simplex. The elements of these discrete objects parametrized by the positive integers $r \in \mathbb{Z}_{\geq 1}$ are counted by tetrahedral polynomials $\operatorname{T}(r) \in \mathbb{Z}[t]$. We give a generating function of these polynomials as r grows. We show that the weights of these elements are precisely the lattice points of $r\Delta_3$ and the β - partition λ of each of these weights is an indexing partition $\lambda \subseteq 3 \times r$ of the Schubert variety X_{λ} in $\operatorname{Gr}(3,3+r)$. Lastly, we show that the Hilbert series $\operatorname{H}(R_{\mathcal{C}^3_{(3,r)}}, t)$ of quotient ring $R_{\mathcal{C}^3_{(3,r)}}$ identified with $\mathcal{C}^3_{(3,r)}$ coincides with the Poincaré polynomial $\operatorname{P}(\operatorname{Gr}(3,3+r),t)$ of the Grassmannian $\operatorname{Gr}(3,3+r)$.