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Abstract

The notion of amoeba played a significant role in the development of tropical geometry. It
led also to many important applications for example in asymptotic theory, thermodynamics, in
dimers1 theory or more generally in computational biology. Such a notion appeared in the end
of XXe century2 as a useful tool towards a quick visualization of algebraic hypersurfaces (one can
profit of the concavity of the logarithm function on R+∗ and hence its slow growth towards +∞).
The terminology amœba arises (we will soon understand why) from biology. The definition of the
amœba of an algebraic hypersurface appeared for the first time around 1990 in the famous treatise
by I. N. Gelfand, M. Krapanov and A. Zelevinsky [19].

Amoeba and coamœba of an algebraic hypersurface in Tn

Definition 0.0.1 (archimedean amœba of an algebraic hypersurface in Tn) Let ZTn(f)
be an algebraic hypersurface of the complex torus Tn = Spec(C[X±1

1 , ..., X±1
n ]) defined as the

support f−1({0}) of divTn(f), where f is a Laurent polynomials in n complex variables with
constant coefficients. The archimedean amœba 3 is be definition the subset4

Af := Log (ZTn(f)) (0.0.1)

1A dimer is a molecular complex of chemicals with two unities (as monomer when there is a single unity, trimer
when there are three unities, oligomer when the number of unities is finite, polymer when it is infinite...)

2In fact one could guess the genesis of the concept goes back to the mathematical contribution of Isaac Newton,
1643-1727 and more recently to that of Victor Puiseux, 1820-1883.

3One precise here the terminology archimedean since the absolute value | | which is involved here arises from
the archimedean absolute value on Q. If f =

∑
α∈Supp(f) cαX

α happens for example to be defined over Q (that

is cα ∈ Q∗ for any α ∈ Supp(f)), then the non-archimedean amœba of f with respect to the p-adic ultrametric
absolute value | |p (when p is a prime integer) is the support (no need here to use the morphism Log anymore since
we are already in the tropical setting) in Rn = (Trop \ {−∞})n of the tropical cycle divTrop(f), where

f =

N

�
j=1

log |cα|p �X�
α[j],1

1 � · · ·�X�
α[j],n

n .

4One uses sometimes instead of Log the map −Log since −Log is the usual tropicalization map in the archimedean
setting (note that −Log was already used for example in Definition ?? for tropical currents). We will keep here to
the use of Log since it is more familiar to complex analysts.



of Rn. Note that it depends only on the support f−1({0}) of divTn(f) despite of the terminology
(archimedean amœba of f), that is multiplicities are not taken into account5.

Example 0.0.1 (amœba of an affine line in T2) We follow here the presentation in [38]. Con-
sider the affine line L0 := {z1 + z2 − 1 = 0} in T2. A point (z1, z2) in T2 belongs to L0 if and only
if z1 ∈ T and z2 ∈ T satisfy the three conditions:

|z1|+ |z2| ≥ 1, |z1|+ 1 ≥ |z2|, |z2|+ 1 ≥ |z1|. (0.0.2)

This amounts to say that the family {1, |z1|, |z2|} is not lobsided6 in the archimedean sense. Such
conditions (0.0.2) stand for the necessary and sufficient conditions ensuring that the positive num-
bers 1, |z1|, |z2| can be interpreted as the lengths of the 1-dimensional faces (facets) of a triangle.
Then, the amœba of the complex line {z1 + z2 = −1} is the image of the domain{

(u, v) ∈ ]0,∞[2 ;u+ v ≥ 1, u+ 1 ≥ v, v + 1 ≥ u
}

by the map (u, v) 7→ (log u, log v) .

Remark 0.0.1 (closedness of Af) Since Tn → Rn is continuous map, the archimedean amoeba
of f ∈ C[X±1

1 , ..., X±1
n ] is a closed subset in Rn. Note also that the open set Log−1(Rn \Af ) ⊂ Tn is

a Reinhardt open subset (that is an open subset which is invariant under the multiplicative action
on Tn of the real torus TnR).

We note that the Log map involved in the definition of the archimedean amœba is the real part of
the complex (multivalued if one considers it from Tn to Cn) holomorphic logarithm

log : z ∈ Tn 7→ Log (z) + i arg (z) ∈ Rn + iTnR.
5We will keep the notation Af instead of AZTn (f) for the sake of simplicity.
6A finite family of srictly positive numbers is said to be lobsided in the archimedean sense if and only if one of

its elements is strictly bigger than the sum of the others.
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The archimedean amœba of the Laurent polynomial f is therefore the projection of logZT(f) ∈
Cn = Rn+iRn on Rn (taking the real part). One could as well consider the projection of logZTn(f)
on TnR (taking this time the imaginary part). Such projection is called the coamœba7 of the Laurent
polynomial f and denoted as coAf .

Archimedean amoebas and Laurent series

Let f ∈ C[X±1
1 , ..., X±1

n ] be a Laurent polynomial with complex coefficients, that is a regular
algebraic function on Tn = Spec(C[X±1

1 , ..., X±1
n ], which is truly in n complex variables8. The

domain of holomorphy of the rational function 1/f consists in the union of the pre-images via
Log of the open connected components E of the open subset Rn \ Af . In each Log−1(E) (which
is a Reinhardt domain), the rational function ζ 7→ 1/f(ζ) can be developped as a Laurent series∑

k∈N aE,kζ
νE,k , where aE,k ∈ C and νE,k ∈ Zn.

An important fact is that there is a one-to-one correspondence between the set of connected compo-
nents of Rn \Af and possible convergent Laurent developments (with precisely domains of conver-
gence the Reinhardt open subsets Log−1(E) when E is an open connected component of Rn \Af)
for the rational function z ∈ Tn 7→ 1/f(z) [17].

On the other side, there is a one-to-one correspondence between the pre-images via arg of the
open connected components E of TnR \ coAf (the coamœba being not closed in Tn as the amœba is
in Rn) and possible integral Mellin representations for such rational function z 7→ 1/f(z) (with
convergence domains precisely the arg−1(E)) [29].

Both such correspondences could be indeed of interest in systems theory or image processing. We
will concentrate in this thesis on the first correspondence ((components C of Rn \Af )↔ (Laurent
developments of 1/f) since we will not explore further here the concept of coamœba.

The rational function z ∈ Tn 7→ 1/f(z) admits in Log−1(E) (E being a selected connected com-
ponent of Rn \Af ) the convergent Laurent development

1

f (z)
=
∞∑
k=0

akz
νk , ak ∈ C, (0.0.3)

where the complex coefficients ak = aE,k and the exponents νk = νE,k ∈ Zn are given by the
integral formulas

ak =
1

(2iπ)n

∫
Log−1({x})

1

f (z)
z−νk

dz

z
, where

dz

z
=
dz1

z1

∧ ... ∧ dzn
zn

, (0.0.4)

where x denotes an arbitrary point in E and the real n-dimensional torus Log−1({x}) with support
in Tn \ZTn(f) is oriented such the n-differential form d arg(z1) ∧ · · · ∧ d arg(zn) is a volume form
on its support. The fact that ak does not depend on the choice of x comes from the fact that

7It remains unclear what could be the companion of the concept of coamœba in the ultrametric (non-
archimedean) setting when f ∈ Z[X±11 , ..., X±1n ]. Therefore, we do not here to precise that we are in the archimedean
setting.

8This means that its Newton polyhedron ∆ (f) (namely the closed convex envelope of its support) is n-
dimensional. If it is not the case, it means, up to a Q-rational linear change of coordinates and a rescaling, that
the situation reduces to that where f can be considered as a Laurent polynomial in strictly less than n variables.
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Log−1({x}) and Log−1({y}) are homologous when x and y lie in both in E. Multi-exponents
νk ∈ Zn such as ak 6= 0 can then be organized as indexed by N, so that the Laurent series on the
right-hand side of (0.0.3) converges normally on any compact subset of Log−1(E).

Remark 0.0.2 If x = (x1, ..., xn) is fixed in E, then (0.0.3) can be reformulated as

1

f(ex1+iθ1 , ..., exn+iθn)
=
∞∑
k=0

ak e
〈νk,x〉 ei〈νk,θ〉

and the integral expression for the coefficients ak is just Fourier inversion formula.

Let us state here the complete result from [17] (completed here with statements from [30]) with
respect to this question about Laurent developments for 1/f as well as related ones.

Theorem 0.0.1 Each connected component E of Rn \ Af is convex and there is a one-to-one
correspondence between the set of connected components of the complement set Rn\Af and possible
convergent Laurent developments 1/f(z) =

∑
k∈N akz

νk (with precisely domains of convergence the
Reinhardt open subsets Log−1(E) when E is an open connected component of Rn \ Af) for the
rational function z ∈ Tn 7→ 1/f(z).

Remark 0.0.3 The convexity of each E follows from the fact that the Reinhardt domain of
convergence of a Laurent series

∑
k∈N akz

νk is always logarithmically convex in Tn, that is of the
form Log−1(U), where U is an open convex subset of Rn.

The Ronkin function Rf and its gradient

Ronkin function is the continiuous function define as :

x ∈ Rn 7−→
∫
TnR

log |s(ex1+iθ1 , ..., exn+iθn)|ψ dνTnR(θ). (0.0.5)

Let f ∈ C[X±1
1 , ..., X±1

n a Laurent polynomial with complex coefficients which is truly in n
variables (dim ∆f = n). As we have already pointed it out, the archimedean amœba Af (that is the
support of the (1, 1)-super-current ddcRf ) does not depend on f , but in fact only on Zf = f−1(0).
On the opposite, the Ronkin function Rf does. It carries indeed the algebraic information (about
multiplicities) that the archimedean Af does not reflect.

Precisely, one can attach to each open (convex) component connected component E of Rn \Af a
multiplicity µE ∈ ∆f ∩ (Zn)?. To see that, fix a connected component E of Rn \ Af . Let x ∈ E
and zx = (zx,1, ..., zx,n) in the fiber Log−1({x}). Then, for any j = 1, ..., n,

µE,j(x) =

∫
TR

(f ′zj
f

)(
zx,1, ..., zx,j−1, e

xj+iθ , zx,j+1, ..., zx,n
)
exj+iθ dνTR(θ) ∈ Z (0.0.6)

as a consequence of the argument principle. An homotopy argument asserts that this integer is in
fact independent on the choice of x, once x remains in the connected component E.
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Definition 0.0.2 (multiplicity of a connected component of Rn \Af) The multiplicity µE ∈
(Zn)? of the connected component E of Rn \ Af is the element in (Zn)? which component with
index j is the integer αE,j(x) for x ∈ E, that is, from the topological point of view, the degree of
the loop

θ ∈ TR 7−→
(
zx,1, ..., zx,j−1, e

xj+iθ , zx,j+1, ..., zx,n
)

for zx ∈ Log−1({x}), this degree being independent on the choice of x in E.

Let us quote here the fundamental result from [17].

Theorem 0.0.2 For each connected component E of Rn \Af , the multiplicity µE belongs to ∆f ∩
(Zn)?. Moreover the map MULTf : E 7→ µE is injective, in general non surjective, although its
image contains the vertices of ∆f . One has then

#{τ ≺ ∆f ; dim τ = 0} ≤ dimH0(Rn \Af ) ≤ #(∆f ∩ (Zn)?). (0.0.7)

Definitions 0.0.1 (optimality, rigidity, genus of the archimedean amœba Af) Let ∆ be a
n-dimensional (Zn)?-integer polyhedron.

1. The archimedean amœba Af of a Laurent polynomial with Newton polyhedron ∆ is said to
be optimal9 if the number of connected components for Rn \Af is maximal, that is equal to
#(∆ ∩ (Zn)?).

2. The archimedean amœba Af of a Laurent polynomial with Newton polyhedron ∆ is said to
be solid10 if the number of connected components for Rn \ Af is minimal, that is equal to
the number of vertices in ∆.

3. The defect between the number of connected components of Rn \Af and the number of ver-
tices of ∆ is the topological genus of Af (that is the number of bounded connected components
of Rn \Af ).

One has the following important result [30].

Theorem 0.0.3 Let f be a Laurent polynomial in n variables with complex coefficients such that
dim ∆f = n. For any α ∈ ∆f ∩ (Zn)?, let the polyhedron be τα ≺ ∆f be

• either the 0-dimensional face {α} of ∆f when α is a vertex of ∆f ;

• either the unique face τ of ∆f which admits α in its relative interior (that is its interior in
the affine R-subspace Aτ)11.

If there exists a connected component E of Rn \Af such that MULTf (E) = µ, the open convex set
E admits as recession cone12 the (n− dim τµ)-dimensional cone

polτµ≺∆f
=
{
x ∈ Rn ; {ξ ∈ ∆f ; 〈ξ, x〉 = max

u∈∆f

〈u, x〉} = τµ
}
.

9For any ∆, there are optimal amœbas.
10The problem to decide wether Af is solid as soon as the support of f coincides sur the set of vertices of ∆f

remains an open question.
11When α is interior to ∆f , note that τα = ∆f .
12The recession cone of a convex open subset U of Rn is the largest strict cone σ in Rn such that U + σ ⊂ U (in

the sense of Minkowski addition of convex bodies) with respect to the ordering induced by the inclusion.
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Coming back to the affine Ronkin function Rf , one observes that it is affine in any component E
of Rn \Af . More precisely, one has the following result [30].

Theorem 0.0.4 (explication of Rf in Rn \Af) Let f =
∑

α cαX
α be a Laurent polynomial in

n variables such that dim ∆f = n. In each connected component E of Rn \Af , one has

∀x ∈ E, Rf (x) = −Řf (µE) + 〈µE, x〉. (0.0.8)

Let 1/f(z) =
∑∞

k=0 aE,k z
E,k be the convergent Laurent development of 1/f in the logarithmically

convex Reinhardt open subset Log−1(E) as in (0.0.3). For each vertex µ of ∆f , the real number
−Řf (µ) equals log |cµ|. Finally, one has stab(Rf ) = ∆f .

Proof 0.0.1 The fact that Rf is C∞ in the Rn\Af follows from Lebesgue’s differentiation theorem

for integrals fonctions of a parameter. The explicitation of the gradient vector function ~∇Rf as a
constant function equal to αC in the connected component E of Rn\Af follows from the application
of this theorem together with the definition (0.0.6) of the components αE,j of the multiplicity µE.
Since a real convex function is the upper enveloppe of the affine functions which it dominates
and Rf is affine in E, the fact that it can be expressed as (0.0.8) follows of the definition of the
Legendre-Fenchel transform Řf . This concludes the proof of the first assertion of the theorem.
Let µ ∈ ∆f ∩ (Zn)? be a vertex of ∆f . Then it follows from theorem 0.0.3 that the recession cone
of the component E such that MULTf (C) = µ equals the n-dimensional cone pol{µ}≺∆f

. Hence
the convergent Laurent development of 1/f in the logarithmically convex Reinhardt open subset
Log−1(E) of Tn is

1

f(z)
=
z−µ

cµ

∞∑
k=0

(−1)k
( ∑
α∈Supp(f)\{µ}

cα
cµ

zα−µ
)
.

Then one has for any z ∈ Log−1(E) that

log |f(z)| = log |cµ|+ 〈µ,Log(z)〉+ log
∣∣∣ ∞∑
k=0

(−1)k
( ∑
α∈Supp(f)\{α}

cβ
cµ

zα−µ
)∣∣∣.

Averaging over the orbit of z with respect to the action of TnR leads to∫
TnR

log |f(z1e
iθ1 , ..., zne

iθn)| dνTnR(θ) = log |cµ|+ 〈µ , Log(z)〉,

which shows that −Řf (µ) = log |cµ|. The final assertion about the stabilizer follows from the fact
that the closures of the connected components E of Rn \Af corresponding with the vertices of ∆f

have disjoint interiors and union equal to Rn �

Contour of archimedean amœbas Af and Gauss logarithmic map

Let f ∈ C[X±1
1 , ..., X±1

n ] a Laurent polynomial in n variables such that dim ∆f = n. Let us suppose
that f is reduced or squarefree, which means that f factorizes in C[X±1

1 , ..., X±1
n ] as a product of

distinct irreducible Laurent polynomials.
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Definition 0.0.3 (contour of the archimedean amœba Af) The contour of the archimedean
amœba Af is be definition the set of critical values of the restriction of the map Log to the algebraic
hypersurface Zf = f−1({0}) of Tn. It consists into two classes of points in Rn, namely :

• the images of points z ∈ Zsing
f ;

• the images of critical points of the restriction of Log to Zreg
f .

Let us suppose that f is reduced, that is squarefree i.e factorized as a product of distinct irreducible
Laurent polynomials. The description of the contour of Af lies on the so called Gauss logarithmic
map. Let us explain its construction. If z0 ∈ Zreg

f , then the partial derivatives ∂z1f(z0), ∂zn f(z0)
do not vanish simultaneously and

γf (z0) =
[
z0,1

∂f

∂z1

(z0) : · · · : z0,n
∂f

∂zn
(z0)

]
∈ Pn−1(C)

(when n = 2, P1(C) being identified with the Riemann sphere S = S2, one may consider then
γf (z0) as a point in S.

Definition 0.0.4 (Gauss logarithmic map of an algebraic hypersurface in Tn) Let f ∈
C[X±1

1 , ..., X±1
n ], reduced and such that dim ∆f = n. The rational map γf : Zreg

f → Pn−1(C)
Gauss logarithmic map of the reduced algebraic hypersurface Zf .

Remark 0.0.4 The Gauss logarithmic map extends as a rational map

γf : Zf −→ Pn−1(C)

which admits as polar set the singular set Zsing
f .

The Gauss logarithmic map was originally introduced by Krapanov [21] for algebraic hypersur-
faces in Tn, but it can be extended naturally to (n −m)-dimensional reduced algebraic complete
intersections, which means that Zf = Zf1,...,fm is defined in Tn as the set of common zeroes of
m ∈ {1, ..., n− 1} Laurent polynomials f1, ..., fm in n variables such that the rank of the jacobian
matrix [∂zkfj(z)]1≤j≤m,1≤k≤n equals generically m on Zf . We also suppose that dim(∆f ) = n,
where ∆f = ∆(f1) + · · ·+ ∆(fm))n, although this hypothesis is not essential (if it is not the case,
the number n of variables can be lowered).

Let Zf (f = (f1, ..., fm)) be such a reduced (n −m) dimensional algebraic complete intersection
in Tn with dim ∆f = n. If z0 ∈ Zreg

f , the m lines of the matrix

γf (z0) =



z0,1
∂f1

∂z1

(z0) · · · z0,n
∂f1

∂zn
(z0)

...
...

...

...
...

...

...
...

...

z0,1
∂fm
∂z1

(z0) · · · z0,n
∂fm
∂zn

(z0)


(0.0.9)
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form a basis of the complex normal m-dimensional space (in logTn = Rn + iRn = Cn
w) to the

complex manifold logZf about log z0 (log = Log + i arg is indeed a multivalued holomorphic
function from Tn to Cn, but one takes here any of its determinations). One can then consider
γf (z0) (f = (f1, ..., fm)) represented as (0.0.9) as an element in the Grassmanian complex manifold
Gr(m,n) whose elements are the m-planes (that is m-dimensional C-subspaces) in Cn (G(1, n) '
Pn−1(C) when m = 1).

Definition 0.0.5 (Gauss logarithmic map of reduced complete intersections in Tn) Let
1 ≤ m ≤ n. Let f1, ..., fm be m elements in C[X±1

1 , ..., X±1
n ] defining a reduced complete intersec-

tion in Tn and such that dim ∆f = n. The Gauss logarithmic map γf = γf1,...,fm is the rational
map from Zreg

f to G(m,n) defined as (0.0.9).

Explicitation of the contour through the Gauss logarithmic map

Let f ∈ C[X±1
1 , ..., X±1

n ] be reduced and such that dim ∆f = n (otherwise one can lower the number
n of variables13). The following result [27, 26] precises the description of the contour cont(Af ) of
the archimedean amœba Af in terms of the Gauss logarithmic map γf .

Theorem 0.0.5 (explicitation of the contour of amœbas of hypersurfaces) Let f ∈
C[X±1

1 , ..., X±1
n ] be a reduced Laurent polynomial truly in n variables (that is dim ∆f = n). Then

the contour of the amœba Af is the closure in Rn of

Log
(
γ−1
f (Pn−1(R))

)
,

where the Gauss logarithmic map is considered from Zreg
f to Pn−1(C). It is also equal to

Log(γ−1
f (Pn−1(R)) is γf denotes the extension of γf as a rational map from Zf to Pn−1(C).

A natural extension of this result to the case of reduced algebraic complete intersections in Tn was
proposed by N. A. Bushueva and A. Tsikh in [1]. We will sketch here a proof of this result since
this proof inspired some methods that will be described in chapter 5.

Theorem 0.0.6 (explicitation of the contour of algebraic reduced complete intersec-
tions) Consider a vector f = (f1, ..., fm) of elements in C[X±1

1 , ..., X±1
n ] which defines a reduced

algebraic complete intersection Zf with dimension d = n −m in Tn, with dim(∆f ) = n. A point
z0 ∈ Zreg

f is a critical point for the restriction of Log to Zreg if and only γf (z0) ∈ Gr(m,n) contains

• at least n− 2d+ 1 linearly independent real vectors when 2d ≤ n ;

• at least one real non zero vector when 2d > n.

Remark 0.0.5 (the two extreme cases m = 1 and m = n− 1)

1. When m = 1 (Zf is an algebraic hypersurface in Tn), 2d = 2(n− 1) and n− 2d+ 1 = 3− n;
since 2d ≤ n⇐⇒ n ≤ 2, we recover in this case that the γ(z0) ∈ G(1, n) = Pn−1(C) contains
one real non zero vector, which means that γ(z) ∈ Pn−1(R). As a consequence, one recovers
Theorem 0.0.5 in this case.

13This last hypothesis is not an essential hypothesis, but we always assume it in order to avoid sometimes non-
necessary discussions.
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Figure 1

2. When n ≥ 2 and m = n − 1 (Zf is then an algebraic curve defined as a reduced complete
intersection in Tn), 2d = 2 and n − 2d + 1 = n − 1. We are in the first case, which means
that all (n− 1, n− 1)-minors of the matrix γ(z) are real.

Proof 0.0.2 Let πR be the projection map from Rn + iRn = Cn
w to Rn which associates to w

its real part, so that Log = πR ◦ log. Since log realizes as a multivalued holomorphic function a
biholomorphism between Tnz and Cn

w, it transforms locally the d-dimensional manifold Zreg
f into a

d-dimensional submanifold of Cn
w. It is therefore the projection πR from logZreg

f to Rn which is
responsible for producing critical points for the restriction of Log to Zreg

f . Given w0 = log z0 ∈
logZreg

f , let Tw0((logZreg
f )R) be the 2d-dimensional tangent plane14 at w to the underlying 2d-

dimensional real manifold (logZreg
f )R of the complex d-dimensional manifold logZreg

f about w0.
Consider the tangent map

Πw0 = d(πR)|(logZreg
f )R(w0) : Tw0((logZreg

f )R) 7−→ TRe(w0)Rn = Rn.

The point z0 is a critical point of LogZreg
f

if and only if we are in one of the two following situations :

• either 2d ≤ n and in this case the tangent map d(πR)|(logZreg
f )R(w0) is non injective ;

• either 2d > n and in this case the tangent map d(πR)|(logZreg
f )R(w0) is non surjective.

Let us now point out that heuristically such condition of non-injectivity or non-surjectivity (de-
pending whether 2d ≤ n or 2d > n) for the tangent map Πw0 are connected with the property for
a certain subspace of the (complex) normal subspace γ(z0) to logZreg

f at w0 to be real. We refer to
Figure 1 to visualize this : for w0 to be a critical point for the restriction to πR to logZreg

f about
w0, one needs such subpace to be horizontal, that is to have non imaginary component, which
means being real.

Let us suppose for the sake of simplicity that w0 = 0 and denote as T0 the tangent plane at w0 to
logZreg

f . Keeping in mind its complex structure of d-complex plane, it is defined by a system of
equations

〈ϕj + i ψj, u+ iv〉 = 0 (j = 1, ..., n− d),

14Such a 2d-dimension tangent space inherits a complex structure an thus can be understood as the complex
tangent plane at w0 to the d-dimensional complex manifold logZreg

f .
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where ϕj, ψj ∈ Rn and w = u+ iv. Let LRe and LIm be the projections of T0 on the real subpaces
Rn
u and Rn

v . As soon as (u, v) ' u + iv belongs to T0, so does (−v, u) (since T0 is also a complex
tangent space to a d-dimensional submanifold of Cn

w). Therefore the two subpaces LRe and LIm

coincide as R-linear subspace is one identifies the copies Rn
u and Rn

v of Rn. Therefore

T0 ⊂ LRe + iLIm = LRe + iLRe.

The vectors ϕj + iψj lie in the complex normal space to logZreg
f at 0, that is in γ(z0), and it

remains to analyze whether they are real. Let us distinguish the two cases.

1. Suppose first that 2d ≤ n. We need to ensure that the tangent map Π0 is not injective, which
means that LRe lies in a (2d− 1)-R-subspace such as

L′Re := {u ∈ Rn; 〈αj, u〉 = 0 for j = 1, ..., n− 2d+ 1} (αj ∈ (Rn)?, j = 1, ..., n− 2d+ 1)

where the rank of the matrix α equals n− 2d+ 1. Since T0 ⊂ LRe + iLRe, one has

T0 ⊂ {w = u+ iv ; 〈αj, u+ iv〉 = 0 for j = 1, ..., n− 2d+ 1}.

Since the complex subspace of the right-hand side is defined by linear equations with real
coefficients, γ(z0) contains at least n− 2d+ 1 independent real vectors.

2. Suppose now that 2d > n. We need to ensure that the tangent map Π0 is not surjective,
which means that LRe lies in a R- hyperplane {u ∈ Rn ; 〈α, u〉 = 0} for some non-zero
α ∈ (Rn)?. One concludes as before that the real vector α belongs to γ(z0).

This discussion concludes the proof of the theorem �

0.0.1 Examples

The contour of the archimedean amœba Af of an algebraic hypersurface in Tn contains the bound-
ary of this amœba, that is is definitively non empty. In fact, the Gauss logarithmic map reveals
to be in this case a convenient tool to draw the amœba15.

The situation is indeed totally different for reduced algebraic complete intersections as soon as
n > 3.

Let us focus on the case of one dimensional reduced algebraic intersections in Tn, that is algebraic
curves defined as a complete intersection in Tn. The simplest example is that of complex lines as

Zf = {z ∈ Tn ; zj = ajz1 + bj for j = 2, ..., n} (aj, bj ∈ T). (0.0.10)

One has in this case

Log|Zf =
(

log |z1|, log |a2z1 + b1|, · · · , log |anz1 + bn|
)
|Zf
.

15We will propose in section ?? when n = 2 an alternative tool, namely the numerical approximation of the
Ronkin function Rf .
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Figure 2

Its jacobian matrix, when expressed in the complex conjugate coordinates z1, z̄1 (z1 being a complex
parameter on Zf ) equals

D Log|Zf
D (z1, z̄1)

=
1

2


1/z1 1/z̄1

1/(z2 + w2) 1/(z̄2 + w̄2)
...

...
1/(zn + wn) 1/(z̄n + w̄n)

 (wj = aj/bj = uj + ivj) (0.0.11)

A point (z1, a2z1 + b2, ..., anz1 + bn) ∈ Zf is critical for Log|Zf if and only if the rank of the matrix
(0.0.11) is strictly less than 2. If z1 = x+ iy, this is equivalent to say that

xvj − yuj = 0 (2 ≤ j ≤ n)

(xvk − yuk)− (xv` − yu`) = ukv` − u`vk (2 ≤ k < ` ≤ n).

Such a system is consistent if and only if ukv` − u`vk = 0 for any 2 ≤ k < ` ≤ n, that is

akb`
a`bk

∈ Rn (2 ≤ k < ` ≤ n). (0.0.12)

Thus, one can state the following result [1].

Proposition 0.0.1 Let n ≥ 3. The amœba Af of the complex line of Tn defined as (0.0.10) is
non empty if and only if the compatibility conditions (0.0.12) are fulfilled. If it is the case, the
contour of the archimedean amœba Af is the image of the real line

{(x+ iy, a2(x+ iy) + b2, ..., an(x+ iy) + bn) ; v2x− u2y = 0} ⊂ Zf

by Log (where aj/bj = uj + ivj, uj, vj ∈ R).

Examples 0.0.1

1. Let n = 3. The compatibility conditions (0.0.12) are not fulfilled when

Zf = {z ∈ T3 ; z2 = z1 + 1, z3 = z1 + 1 + i}.

The contour is thus empty. The map Log realizes a (real) diffeomorphism between the real
surface (Zf )R and the amœba Af , which is then said to be non-degenerated. See Figure 2,
left.
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Figure 3

2. Let still n = 3. The compatibility conditions (0.0.12) are fulfilled when

Zf = {z ∈ T3 ; z2 = z1 + 1, z3 = z1 + 1}

since here a2b3/(a3b2) = 2 ∈ R. The amœba is a surface with boundary in R3 and each of its
interior points has two pre-images via Log on Zf : the images in R3 via Log of the conjugate
points (z1, z1 + 1, z1 + 2) and (z̄1, z̄1 + 1, z̄1 + 2) (distinct when z1 /∈ R) do coincide. The
contour of Af is its topological boundary, which is realized as the image of the real line

{(x+ iy, (x+ iy) + 1, (x+ iy) + 2) ∈ Zf ; y = 0} ⊂ Zf

by Log. The amœba is realized from the non-degenerated one by “collapsing”. Note that at
any point z0 such that Log(z0) is on the contour, that is here the topological boundary, of
the amœba Af , the image γ(z0), that is the normal complex space to logZf , contains a real
plane. See Figure 3, right.
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