An introduction of amœbas in Mathematics

By Winnie OSSETE INGOBA

This talk is an chapter of my thesis intilted : A New Insight On Ronkin Functions Or Currents under the direction of Professors Alain YGER (IMB : France) and Marie-Salomon SAMBOU (UASZ, Sénégal).

Abstract

The notion of amoeba played a significant role in the development of tropical geometry. It led also to many important applications for example in asymptotic theory, thermodynamics, in dimers¹ theory or more generally in computational biology. Such a notion appeared in the end of XX^e century² as a useful tool towards a quick visualization of algebraic hypersurfaces (one can profit of the concavity of the logarithm function on \mathbb{R}^{+*} and hence its slow growth towards $+\infty$). The terminology *amæba* arises (we will soon understand why) from biology. The definition of the *amæba of an algebraic hypersurface* appeared for the first time around 1990 in the famous treatise by I. N. Gelfand, M. Krapanov and A. Zelevinsky [19].

Amoeba and coamœba of an algebraic hypersurface in \mathbb{T}^n

Definition 0.0.1 (archimedean amœba of an algebraic hypersurface in \mathbb{T}^n) Let $\mathbb{Z}_{\mathbb{T}^n}(f)$ be an algebraic hypersurface of the complex torus $\mathbb{T}^n = \operatorname{Spec}(\mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}])$ defined as the support $f^{-1}(\{0\})$ of $\operatorname{div}_{\mathbb{T}^n}(f)$, where f is a Laurent polynomials in n complex variables with constant coefficients. The archimedean amæba³ is be definition the subset⁴

$$\mathscr{A}_f := \operatorname{Log}\left(\boldsymbol{Z}_{\mathbb{T}^n}(f)\right) \tag{0.0.1}$$

$$\mathfrak{f} = \bigoplus_{j=1}^{N} \log |c_{\alpha}|_{p} \boxtimes X_{1}^{\boxtimes^{\alpha_{[j],1}}} \boxtimes \cdots \boxtimes X_{n}^{\boxtimes^{\alpha_{[j],n}}}.$$

⁴One uses sometimes instead of Log the map -Log since -Log is the usual *tropicalization map* in the archimedean setting (note that -Log was already used for example in Definition ?? for tropical currents). We will keep here to the use of Log since it is more familiar to complex analysts.

¹A dimer is a molecular complex of chemicals with two unities (as monomer when there is a single unity, trimer when there are three unities, oligomer when the number of unities is finite, polymer when it is infinite...)

²In fact one could guess the genesis of the concept goes back to the mathematical contribution of Isaac Newton, 1643-1727 and more recently to that of Victor Puiseux, 1820-1883.

³One precise here the terminology archimedean since the absolute value | | which is involved here arises from the archimedean absolute value on \mathbb{Q} . If $f = \sum_{\alpha \in \text{Supp}(f)} c_{\alpha} X^{\alpha}$ happens for example to be defined over \mathbb{Q} (that is $c_{\alpha} \in \mathbb{Q}^*$ for any $\alpha \in \text{Supp}(f)$), then the non-archimedean anxeba of f with respect to the *p*-adic ultrametric absolute value $| |_p$ (when p is a prime integer) is the support (no need here to use the morphism Log anymore since we are already in the tropical setting) in $\mathbb{R}^n = (\text{Trop} \setminus \{-\infty\})^n$ of the tropical cycle div_{Trop}(f), where

of \mathbb{R}^n . Note that it depends only on the support $f^{-1}(\{0\})$ of $\operatorname{div}_{\mathbb{T}^n}(f)$ despite of the terminology (archimedean ameeba of f), that is multiplicities are not taken into account⁵.

Example 0.0.1 (anceba of an affine line in \mathbb{T}^2) We follow here the presentation in [38]. Consider the affine line $L_0 := \{z_1 + z_2 - 1 = 0\}$ in \mathbb{T}^2 . A point (z_1, z_2) in \mathbb{T}^2 belongs to L_0 if and only if $z_1 \in \mathbb{T}$ and $z_2 \in \mathbb{T}$ satisfy the three conditions:

$$|z_1| + |z_2| \ge 1, |z_1| + 1 \ge |z_2|, |z_2| + 1 \ge |z_1|.$$
 (0.0.2)

This amounts to say that the family $\{1, |z_1|, |z_2|\}$ is not lobsided⁶ in the archimedean sense. Such conditions (0.0.2) stand for the necessary and sufficient conditions ensuring that the positive numbers 1, $|z_1|$, $|z_2|$ can be interpreted as the lengths of the 1-dimensional faces (facets) of a triangle. Then, the amœba of the complex line $\{z_1 + z_2 = -1\}$ is the image of the domain

$$\left\{ (u,v) \in \left] 0, \infty \right[^2; u+v \ge 1, \, u+1 \ge v, \, v+1 \ge u \right\}$$

by the map $(u, v) \mapsto (\log u, \log v)$.

Remark 0.0.1 (closedness of \mathscr{A}_f) Since $\mathbb{T}^n \to \mathbb{R}^n$ is continuous map, the archimedean amoeba of $f \in \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ is a closed subset in \mathbb{R}^n . Note also that the open set $\mathrm{Log}^{-1}(\mathbb{R}^n \setminus \mathscr{A}_f) \subset \mathbb{T}^n$ is a Reinhardt open subset (that is an open subset which is invariant under the multiplicative action on \mathbb{T}^n of the real torus $\mathbb{T}^n_{\mathbb{R}}$).

We note that the Log map involved in the definition of the archimedean amœba is the real part of the complex (multivalued if one considers it from \mathbb{T}^n to \mathbb{C}^n) holomorphic logarithm

 $\log : z \in \mathbb{T}^n \mapsto \operatorname{Log}\left(z\right) + i \operatorname{arg}\left(z\right) \in \mathbb{R}^n + i \,\mathbb{T}_{\mathbb{R}}^n.$

⁵We will keep the notation \mathscr{A}_f instead of $\mathscr{A}_{\mathbb{Z}_{\mathbb{T}^n}(f)}$ for the sake of simplicity.

⁶A finite family of srictly positive numbers is said to be *lobsided* in the archimedean sense if and only if one of its elements is strictly bigger than the sum of the others.

The archimedean anceba of the Laurent polynomial f is therefore the projection of $\log \mathbb{Z}_{\mathbb{T}}(f) \in \mathbb{C}^n = \mathbb{R}^n + i\mathbb{R}^n$ on \mathbb{R}^n (taking the real part). One could as well consider the projection of $\log \mathbb{Z}_{\mathbb{T}^n}(f)$ on $\mathbb{T}^n_{\mathbb{R}}$ (taking this time the imaginary part). Such projection is called the *coamæba*⁷ of the Laurent polynomial f and denoted as $co\mathscr{A}_f$.

Archimedean amoebas and Laurent series

Let $f \in \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ be a Laurent polynomial with complex coefficients, that is a regular algebraic function on $\mathbb{T}^n = \operatorname{Spec}(\mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}])$, which is *truly* in *n* complex variables⁸. The domain of holomorphy of the rational function 1/f consists in the union of the pre-images *via* Log of the open connected components *E* of the open subset $\mathbb{R}^n \setminus \mathscr{A}_f$. In each $\operatorname{Log}^{-1}(E)$ (which is a Reinhardt domain), the rational function $\zeta \mapsto 1/f(\zeta)$ can be developed as a Laurent series $\sum_{k \in \mathbb{N}} a_{E,k} \zeta^{\nu_{E,k}}$, where $a_{E,k} \in \mathbb{C}$ and $\nu_{E,k} \in \mathbb{Z}^n$.

An important fact is that there is a one-to-one correspondence between the set of connected components of $\mathbb{R}^n \setminus \mathscr{A}_f$ and possible convergent Laurent developments (with precisely domains of convergence the Reinhardt open subsets $\mathrm{Log}^{-1}(E)$ when E is an open connected component of $\mathbb{R}^n \setminus \mathscr{A}_f$) for the rational function $z \in \mathbb{T}^n \mapsto 1/f(z)$ [17].

On the other side, there is a one-to-one correspondence between the pre-images via arg of the open connected components \mathfrak{E} of $\mathbb{T}^n_{\mathbb{R}} \setminus \overline{\operatorname{co}\mathscr{A}_f}$ (the coamæba being not closed in \mathbb{T}^n as the amæba is in \mathbb{R}^n) and possible integral Mellin representations for such rational function $z \mapsto 1/f(z)$ (with convergence domains precisely the $\operatorname{arg}^{-1}(\mathfrak{E})$) [29].

Both such correspondences could be indeed of interest in systems theory or image processing. We will concentrate in this thesis on the first correspondence ((components C of $\mathbb{R}^n \setminus \mathscr{A}_f$) \leftrightarrow (Laurent developments of 1/f) since we will not explore further here the concept of coamœba.

The rational function $z \in \mathbb{T}^n \mapsto 1/f(z)$ admits in $\mathrm{Log}^{-1}(E)$ (*E* being a selected connected component of $\mathbb{R}^n \setminus \mathscr{A}_f$) the convergent Laurent development

$$\frac{1}{f(z)} = \sum_{k=0}^{\infty} a_k z^{\nu_k}, \ a_k \in \mathbb{C},$$
(0.0.3)

where the complex coefficients $a_k = a_{E,k}$ and the exponents $\nu_k = \nu_{E,k} \in \mathbb{Z}^n$ are given by the integral formulas

$$a_{k} = \frac{1}{(2i\pi)^{n}} \int_{\text{Log}^{-1}(\{x\})} \frac{1}{f(z)} z^{-\nu_{k}} \frac{dz}{z}, \quad \text{where} \quad \frac{dz}{z} = \frac{dz_{1}}{z_{1}} \wedge \dots \wedge \frac{dz_{n}}{z_{n}}, \tag{0.0.4}$$

where x denotes an arbitrary point in E and the real n-dimensional torus $\text{Log}^{-1}(\{x\})$ with support in $\mathbb{T}^n \setminus \mathbb{Z}_{\mathbb{T}^n}(f)$ is oriented such the n-differential form $d \arg(z_1) \wedge \cdots \wedge d \arg(z_n)$ is a volume form on its support. The fact that a_k does not depend on the choice of x comes from the fact that

⁷It remains unclear what could be the companion of the concept of coamœba in the ultrametric (nonarchimedean) setting when $f \in \mathbb{Z}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$. Therefore, we do not here to precise that we are in the archimedean setting.

⁸This means that its Newton polyhedron $\Delta(f)$ (namely the closed convex envelope of its support) is *n*-dimensional. If it is not the case, it means, up to a Q-rational linear change of coordinates and a rescaling, that the situation reduces to that where f can be considered as a Laurent polynomial in strictly less than n variables.

 $\text{Log}^{-1}(\{x\})$ and $\text{Log}^{-1}(\{y\})$ are homologous when x and y lie in both in E. Multi-exponents $\nu_k \in \mathbb{Z}^n$ such as $a_k \neq 0$ can then be organized as indexed by \mathbb{N} , so that the Laurent series on the right-hand side of (0.0.3) converges normally on any compact subset of $\text{Log}^{-1}(E)$.

Remark 0.0.2 If $x = (x_1, ..., x_n)$ is fixed in E, then (0.0.3) can be reformulated as

$$\frac{1}{f(e^{x_1+i\theta_1},...,e^{x_n+i\theta_n})} = \sum_{k=0}^{\infty} a_k e^{\langle \nu_k,x \rangle} e^{i\langle \nu_k,\theta \rangle}$$

and the integral expression for the coefficients a_k is just Fourier inversion formula.

Let us state here the complete result from [17] (completed here with statements from [30]) with respect to this question about Laurent developments for 1/f as well as related ones.

Theorem 0.0.1 Each connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$ is convex and there is a one-to-one correspondence between the set of connected components of the complement set $\mathbb{R}^n \setminus \mathscr{A}_f$ and possible convergent Laurent developments $1/f(z) = \sum_{k \in \mathbb{N}} a_k z^{\nu_k}$ (with precisely domains of convergence the Reinhardt open subsets $\mathrm{Log}^{-1}(E)$ when E is an open connected component of $\mathbb{R}^n \setminus \mathscr{A}_f$) for the rational function $z \in \mathbb{T}^n \mapsto 1/f(z)$.

Remark 0.0.3 The convexity of each E follows from the fact that the Reinhardt domain of convergence of a Laurent series $\sum_{k \in \mathbb{N}} a_k z^{\nu_k}$ is always logarithmically convex in \mathbb{T}^n , that is of the form $\mathrm{Log}^{-1}(U)$, where U is an open convex subset of \mathbb{R}^n .

The Ronkin function R_f and its gradient

Ronkin function is the continuous function define as :

$$x \in \mathbb{R}^n \longmapsto \int_{\mathbb{T}^n_{\mathbb{R}}} \log |s(e^{x_1 + i\theta_1}, ..., e^{x_n + i\theta_n})|_{\psi} \, d\nu_{\mathbb{T}^n_{\mathbb{R}}}(\theta).$$
(0.0.5)

Let $f \in \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ a Laurent polynomial with complex coefficients which is truly in n variables $(\dim \Delta_f = n)$. As we have already pointed it out, the archimedean amœba \mathscr{A}_f (that is the support of the (1, 1)-super-current $dd^c \mathbf{R}_f$) does not depend on f, but in fact only on $\mathbf{Z}_f = f^{-1}(0)$. On the opposite, the Ronkin function R_f does. It carries indeed the algebraic information (about multiplicities) that the archimedean \mathscr{A}_f does not reflect.

Precisely, one can attach to each open (convex) component connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$ a multiplicity $\mu_E \in \Delta_f \cap (\mathbb{Z}^n)^*$. To see that, fix a connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$. Let $x \in E$ and $z_x = (z_{x,1}, ..., z_{x,n})$ in the fiber $\mathrm{Log}^{-1}(\{x\})$. Then, for any j = 1, ..., n,

$$\mu_{E,j}(x) = \int_{\mathbb{T}_{\mathbb{R}}} \left(\frac{f'_{z_j}}{f} \right) \left(z_{x,1}, ..., z_{x,j-1}, e^{x_j + i\theta}, z_{x,j+1}, ..., z_{x,n} \right) e^{x_j + i\theta} \, d\nu_{\mathbb{T}_{\mathbb{R}}}(\theta) \in \mathbb{Z} \tag{0.0.6}$$

as a consequence of the argument principle. An homotopy argument asserts that this integer is in fact independent on the choice of x, once x remains in the connected component E.

Definition 0.0.2 (multiplicity of a connected component of $\mathbb{R}^n \setminus \mathscr{A}_f$) The multiplicity $\mu_E \in (\mathbb{Z}^n)^*$ of the connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$ is the element in $(\mathbb{Z}^n)^*$ which component with index j is the integer $\alpha_{E,j}(x)$ for $x \in E$, that is, from the topological point of view, the degree of the loop

$$\theta \in \mathbb{T}_{\mathbb{R}} \longmapsto \left(z_{x,1}, \dots, z_{x,j-1}, e^{x_j + i\theta}, z_{x,j+1}, \dots, z_{x,n} \right)$$

for $z_x \in \text{Log}^{-1}(\{x\})$, this degree being independent on the choice of x in E.

Let us quote here the fundamental result from [17].

Theorem 0.0.2 For each connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$, the multiplicity μ_E belongs to $\Delta_f \cap (\mathbb{Z}^n)^*$. Moreover the map $\operatorname{MULT}_f : E \mapsto \mu_E$ is injective, in general non surjective, although its image contains the vertices of Δ_f . One has then

$$#\{\tau \prec \Delta_f; \dim \tau = 0\} \le \dim H_0(\mathbb{R}^n \setminus \mathscr{A}_f) \le #(\Delta_f \cap (\mathbb{Z}^n)^*). \tag{0.0.7}$$

Definitions 0.0.1 (optimality, rigidity, genus of the archimedean amœba \mathscr{A}_f) Let Δ be a *n*-dimensional $(\mathbb{Z}^n)^*$ -integer polyhedron.

- 1. The archimedean amœba \mathscr{A}_f of a Laurent polynomial with Newton polyhedron Δ is said to be *optimal*⁹ if the number of connected components for $\mathbb{R}^n \setminus \mathscr{A}_f$ is *maximal*, that is equal to $\#(\Delta \cap (\mathbb{Z}^n)^*)$.
- 2. The archimedean amœba \mathscr{A}_f of a Laurent polynomial with Newton polyhedron Δ is said to be $solid^{10}$ if the number of connected components for $\mathbb{R}^n \setminus \mathscr{A}_f$ is *minimal*, that is equal to the number of vertices in Δ .
- 3. The defect between the number of connected components of $\mathbb{R}^n \setminus \mathscr{A}_f$ and the number of vertices of Δ is the *topological genus* of \mathscr{A}_f (that is the number of bounded connected components of $\mathbb{R}^n \setminus \mathscr{A}_f$).

One has the following important result [30].

Theorem 0.0.3 Let f be a Laurent polynomial in n variables with complex coefficients such that $\dim \Delta_f = n$. For any $\alpha \in \Delta_f \cap (\mathbb{Z}^n)^*$, let the polyhedron be $\tau_{\alpha} \prec \Delta_f$ be

- either the 0-dimensional face $\{\alpha\}$ of Δ_f when α is a vertex of Δ_f ;
- either the unique face τ of Δ_f which admits α in its relative interior (that is its interior in the affine \mathbb{R} -subspace A_{τ})¹¹.

If there exists a connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$ such that $\mathrm{MULT}_f(E) = \mu$, the open convex set E admits as recession cone¹² the $(n - \dim \tau_{\mu})$ -dimensional cone

$$\operatorname{pol}_{\tau_{\mu} \prec \Delta_{f}} = \left\{ x \in \mathbb{R}^{n} \, ; \, \left\{ \xi \in \Delta_{f} \, ; \, \left\langle \xi, x \right\rangle = \max_{u \in \Delta_{f}} \left\langle u, x \right\rangle \right\} = \tau_{\mu} \right\}.$$

⁹For any Δ , there are optimal amœbas.

¹⁰The problem to decide wether \mathscr{A}_f is solid as soon as the support of f coincides sur the set of vertices of Δ_f remains an open question.

¹¹When α is interior to Δ_f , note that $\tau_{\alpha} = \Delta_f$.

¹²The recession cone of a convex open subset U of \mathbb{R}^n is the largest strict cone σ in \mathbb{R}^n such that $U + \sigma \subset U$ (in the sense of Minkowski addition of convex bodies) with respect to the ordering induced by the inclusion.

Coming back to the affine Ronkin function R_f , one observes that it is affine in any component E of $\mathbb{R}^n \setminus \mathscr{A}_f$. More precisely, one has the following result [30].

Theorem 0.0.4 (explication of R_f in $\mathbb{R}^n \setminus \mathscr{A}_f$) Let $f = \sum_{\alpha} c_{\alpha} X^{\alpha}$ be a Laurent polynomial in n variables such that dim $\Delta_f = n$. In each connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$, one has

$$\forall x \in E, \quad R_f(x) = -\check{R}_f(\mu_E) + \langle \mu_E, x \rangle. \tag{0.0.8}$$

Let $1/f(z) = \sum_{k=0}^{\infty} a_{E,k} z^{E,k}$ be the convergent Laurent development of 1/f in the logarithmically convex Reinhardt open subset $\text{Log}^{-1}(E)$ as in (0.0.3). For each vertex μ of Δ_f , the real number $-\check{R}_f(\mu)$ equals $\log |c_{\mu}|$. Finally, one has $\operatorname{stab}(R_f) = \Delta_f$.

Proof 0.0.1 The fact that R_f is C^{∞} in the $\mathbb{R}^n \setminus \mathscr{A}_f$ follows from Lebesgue's differentiation theorem for integrals fonctions of a parameter. The explicitation of the gradient vector function ∇R_f as a constant function equal to α_C in the connected component E of $\mathbb{R}^n \setminus \mathscr{A}_f$ follows from the application of this theorem together with the definition (0.0.6) of the components $\alpha_{E,j}$ of the multiplicity μ_E . Since a real convex function is the upper enveloppe of the affine functions which it dominates and R_f is affine in E, the fact that it can be expressed as (0.0.8) follows of the definition of the Legendre-Fenchel transform \check{R}_f . This concludes the proof of the first assertion of the theorem. Let $\mu \in \Delta_f \cap (\mathbb{Z}^n)^*$ be a vertex of Δ_f . Then it follows from theorem 0.0.3 that the recession cone

Let $\mu \in \Delta_f \cap (\mathbb{Z}^n)$ be a vertex of Δ_f . Then it follows from theorem 0.0.5 that the recession cone of the component E such that $\operatorname{MULT}_f(C) = \mu$ equals the *n*-dimensional cone $\operatorname{pol}_{\{\mu\}\prec\Delta_f}$. Hence the convergent Laurent development of 1/f in the logarithmically convex Reinhardt open subset $\operatorname{Log}^{-1}(E)$ of \mathbb{T}^n is

$$\frac{1}{f(z)} = \frac{z^{-\mu}}{c_{\mu}} \sum_{k=0}^{\infty} (-1)^k \Big(\sum_{\alpha \in \operatorname{Supp}(f) \setminus \{\mu\}} \frac{c_{\alpha}}{c\mu} z^{\alpha-\mu} \Big).$$

Then one has for any $z \in Log^{-1}(E)$ that

$$\log |f(z)| = \log |c_{\mu}| + \langle \mu, \operatorname{Log}(z) \rangle + \log \Big| \sum_{k=0}^{\infty} (-1)^{k} \Big(\sum_{\alpha \in \operatorname{Supp}(f) \setminus \{\alpha\}} \frac{c_{\beta}}{c\mu} z^{\alpha-\mu} \Big) \Big|.$$

Averaging over the orbit of z with respect to the action of $\mathbb{T}^n_{\mathbb{R}}$ leads to

$$\int_{\mathbb{T}^n_{\mathbb{R}}} \log |f(z_1 e^{i\theta_1}, ..., z_n e^{i\theta_n})| \, d\nu_{\mathbb{T}^n_{\mathbb{R}}}(\theta) = \log |c_{\mu}| + \langle \mu, \operatorname{Log}(z) \rangle,$$

which shows that $-\dot{R}_f(\mu) = \log |c_{\mu}|$. The final assertion about the stabilizer follows from the fact that the closures of the connected components E of $\mathbb{R}^n \setminus \mathscr{A}_f$ corresponding with the vertices of Δ_f have disjoint interiors and union equal to $\mathbb{R}^n \blacksquare$

Contour of archimedean amœbas \mathscr{A}_f and Gauss logarithmic map

Let $f \in \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ a Laurent polynomial in n variables such that dim $\Delta_f = n$. Let us suppose that f is *reduced* or *squarefree*, which means that f factorizes in $\mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ as a product of distinct irreducible Laurent polynomials.

Definition 0.0.3 (contour of the archimedean amœba \mathscr{A}_f) The *contour* of the archimedean amœba \mathscr{A}_f is be definition the set of critical values of the restriction of the map Log to the algebraic hypersurface $\mathbf{Z}_f = f^{-1}(\{0\})$ of \mathbb{T}^n . It consists into two classes of points in \mathbb{R}^n , namely :

- the images of points $z \in \mathbf{Z}_{f}^{\text{sing}}$;
- the images of critical points of the restriction of Log to $\boldsymbol{Z}_{f}^{\text{reg}}$.

Let us suppose that f is reduced, that is squarefree i.e factorized as a product of distinct irreducible Laurent polynomials. The description of the contour of \mathscr{A}_f lies on the so called *Gauss logarithmic* map. Let us explain its construction. If $z_0 \in \mathbb{Z}_f^{\text{reg}}$, then the partial derivatives $\partial_{z_1} f(z_0)$, $\partial_{z_n} f(z_0)$ do not vanish simultaneously and

$$\gamma_f(z_0) = \left[z_{0,1} \frac{\partial f}{\partial z_1}(z_0) : \dots : z_{0,n} \frac{\partial f}{\partial z_n}(z_0) \right] \in \mathbb{P}^{n-1}(\mathbb{C})$$

(when n = 2, $\mathbb{P}^1(\mathbb{C})$ being identified with the Riemann sphere $\mathbb{S} = \mathbb{S}^2$, one may consider then $\gamma_f(z_0)$ as a point in \mathbb{S} .

Definition 0.0.4 (Gauss logarithmic map of an algebraic hypersurface in \mathbb{T}^n) Let $f \in \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$, reduced and such that dim $\Delta_f = n$. The rational map $\gamma_f : \mathbb{Z}_f^{\text{reg}} \to \mathbb{P}^{n-1}(\mathbb{C})$ Gauss logarithmic map of the reduced algebraic hypersurface \mathbb{Z}_f .

Remark 0.0.4 The Gauss logarithmic map extends as a rational map

$$oldsymbol{\gamma}_f \ : oldsymbol{Z}_f \longrightarrow \mathbb{P}^{n-1}(\mathbb{C})$$

which admits as polar set the singular set Z_f^{sing} .

The Gauss logarithmic map was originally introduced by Krapanov [21] for algebraic hypersurfaces in \mathbb{T}^n , but it can be extended naturally to (n-m)-dimensional reduced algebraic complete intersections, which means that $\mathbf{Z}_f = \mathbf{Z}_{f_1,...,f_m}$ is defined in \mathbb{T}^n as the set of common zeroes of $m \in \{1,...,n-1\}$ Laurent polynomials $f_1,...,f_m$ in n variables such that the rank of the jacobian matrix $[\partial_{z_k} f_j(z)]_{1 \leq j \leq m, 1 \leq k \leq n}$ equals generically m on \mathbf{Z}_f . We also suppose that $\dim(\Delta_f) = n$, where $\Delta_f = \Delta(f_1) + \cdots + \Delta(f_m) n$, although this hypothesis is not essential (if it is not the case, the number n of variables can be lowered).

Let \mathbf{Z}_f $(f = (f_1, ..., f_m))$ be such a reduced (n - m) dimensional algebraic complete intersection in \mathbb{T}^n with dim $\Delta_f = n$. If $z_0 \in \mathbf{Z}_f^{\text{reg}}$, the *m* lines of the matrix

$$\gamma_f(z_0) = \begin{pmatrix} z_{0,1} \frac{\partial f_1}{\partial z_1}(z_0) & \cdots & z_{0,n} \frac{\partial f_1}{\partial z_n}(z_0) \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ z_{0,1} \frac{\partial f_m}{\partial z_1}(z_0) & \cdots & z_{0,n} \frac{\partial f_m}{\partial z_n}(z_0) \end{pmatrix}$$
(0.0.9)

form a basis of the complex normal *m*-dimensional space (in $\log \mathbb{T}^n = \mathbb{R}^n + i\mathbb{R}^n = \mathbb{C}^n_w$) to the complex manifold $\log \mathbb{Z}_f$ about $\log z_0$ ($\log = \log + i \arg$ is indeed a multivalued holomorphic function from \mathbb{T}^n to \mathbb{C}^n , but one takes here any of its determinations). One can then consider $\gamma_f(z_0)$ ($f = (f_1, ..., f_m)$) represented as (0.0.9) as an element in the *Grassmanian complex manifold* $\operatorname{Gr}(m, n)$ whose elements are the *m*-planes (that is *m*-dimensional \mathbb{C} -subspaces) in \mathbb{C}^n ($\operatorname{G}(1, n) \simeq \mathbb{P}^{n-1}(\mathbb{C})$ when m = 1).

Definition 0.0.5 (Gauss logarithmic map of reduced complete intersections in \mathbb{T}^n) Let $1 \leq m \leq n$. Let $f_1, ..., f_m$ be m elements in $\mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ defining a reduced complete intersection in \mathbb{T}^n and such that dim $\Delta_f = n$. The Gauss logarithmic map $\gamma_f = \gamma_{f_1,...,f_m}$ is the rational map from $\mathbf{Z}_f^{\text{reg}}$ to $\mathsf{G}(m, n)$ defined as (0.0.9).

Explicitation of the contour through the Gauss logarithmic map

Let $f \in \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ be reduced and such that dim $\Delta_f = n$ (otherwise one can lower the number n of variables¹³). The following result [27, 26] precises the description of the contour cont(\mathscr{A}_f) of the archimedean ameeba \mathscr{A}_f in terms of the Gauss logarithmic map γ_f .

Theorem 0.0.5 (explicitation of the contour of amœbas of hypersurfaces) Let $f \in \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ be a reduced Laurent polynomial truly in n variables (that is $\dim \Delta_f = n$). Then the contour of the amæba \mathscr{A}_f is the closure in \mathbb{R}^n of

$$\operatorname{Log}(\gamma_f^{-1}(\mathbb{P}^{n-1}(\mathbb{R})))),$$

where the Gauss logarithmic map is considered from $\mathbf{Z}_{f}^{\text{reg}}$ to $\mathbb{P}^{n-1}(\mathbb{C})$. It is also equal to $\text{Log}(\boldsymbol{\gamma}_{f}^{-1}(\mathbb{P}^{n-1}(\mathbb{R})) \text{ is } \boldsymbol{\gamma}_{f} \text{ denotes the extension of } \boldsymbol{\gamma}_{f} \text{ as a rational map from } \mathbf{Z}_{f} \text{ to } \mathbb{P}^{n-1}(\mathbb{C}).$

A natural extension of this result to the case of reduced algebraic complete intersections in \mathbb{T}^n was proposed by N. A. Bushueva and A. Tsikh in [1]. We will sketch here a proof of this result since this proof inspired some methods that will be described in chapter 5.

Theorem 0.0.6 (explicitation of the contour of algebraic reduced complete intersections) Consider a vector $f = (f_1, ..., f_m)$ of elements in $\mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]$ which defines a reduced algebraic complete intersection \mathbf{Z}_f with dimension d = n - m in \mathbb{T}^n , with dim $(\Delta_f) = n$. A point $z_0 \in \mathbf{Z}_f^{\text{reg}}$ is a critical point for the restriction of Log to \mathbf{Z}^{reg} if and only $\gamma_f(z_0) \in \text{Gr}(m, n)$ contains

- at least n 2d + 1 linearly independent real vectors when $2d \le n$;
- at least one real non zero vector when 2d > n.

Remark 0.0.5 (the two extreme cases m = 1 and m = n - 1)

1. When m = 1 (\mathbb{Z}_f is an algebraic hypersurface in \mathbb{T}^n), 2d = 2(n-1) and n - 2d + 1 = 3 - n; since $2d \leq n \iff n \leq 2$, we recover in this case that the $\gamma(z_0) \in \mathsf{G}(1,n) = \mathbb{P}^{n-1}(\mathbb{C})$ contains one real non zero vector, which means that $\gamma(z) \in \mathbb{P}^{n-1}(\mathbb{R})$. As a consequence, one recovers Theorem 0.0.5 in this case.

¹³This last hypothesis is not an essential hypothesis, but we always assume it in order to avoid sometimes nonnecessary discussions.

Figure 1

2. When $n \ge 2$ and m = n - 1 (\mathbb{Z}_f is then an algebraic curve defined as a reduced complete intersection in \mathbb{T}^n), 2d = 2 and n - 2d + 1 = n - 1. We are in the first case, which means that all (n - 1, n - 1)-minors of the matrix $\gamma(z)$ are real.

Proof 0.0.2 Let $\pi_{\mathbb{R}}$ be the projection map from $\mathbb{R}^n + i\mathbb{R}^n = \mathbb{C}^n_w$ to \mathbb{R}^n which associates to w its real part, so that $\text{Log} = \pi_{\mathbb{R}} \circ \log$. Since log realizes as a multivalued holomorphic function a biholomorphism between \mathbb{T}^n_z and \mathbb{C}^n_w , it transforms locally the *d*-dimensional manifold $\mathbf{Z}_f^{\text{reg}}$ into a *d*-dimensional submanifold of \mathbb{C}^n_w . It is therefore the projection $\pi_{\mathbb{R}}$ from $\log \mathbf{Z}_f^{\text{reg}}$ to \mathbb{R}^n which is responsible for producing critical points for the restriction of Log to $\mathbf{Z}_f^{\text{reg}}$. Given $w_0 = \log z_0 \in \log \mathbf{Z}_f^{\text{reg}}$, let $T_{w_0}((\log \mathbf{Z}_f^{\text{reg}})_{\mathbb{R}})$ be the 2*d*-dimensional tangent plane¹⁴ at w to the underlying 2*d*-dimensional real manifold $(\log \mathbf{Z}_f^{\text{reg}})_{\mathbb{R}}$ of the complex *d*-dimensional manifold $\log \mathbf{Z}_f^{\text{reg}}$ about w_0 . Consider the tangent map

$$\Pi_{w_0} = d(\pi_{\mathbb{R}})_{|(\log \mathbf{Z}_f^{\mathrm{reg}})_{\mathbb{R}}}(w_0) : T_{w_0}((\log \mathbf{Z}_f^{\mathrm{reg}})_{\mathbb{R}}) \longmapsto T_{\mathrm{Re}(w_0)} \mathbb{R}^n = \mathbb{R}^n.$$

The point z_0 is a critical point of $\text{Log}_{\mathbf{Z}_f^{\text{reg}}}$ if and only if we are in one of the two following situations :

- either $2d \leq n$ and in this case the tangent map $d(\pi_{\mathbb{R}})_{|(\log \mathbf{Z}_{f}^{\mathrm{reg}})_{\mathbb{R}}}(w_{0})$ is non injective ;
- either 2d > n and in this case the tangent map $d(\pi_{\mathbb{R}})_{|(\log \mathbf{Z}_{f}^{\mathrm{reg}})_{\mathbb{R}}}(w_{0})$ is non surjective.

Let us now point out that heuristically such condition of non-injectivity or non-surjectivity (depending whether $2d \leq n$ or 2d > n) for the tangent map Π_{w_0} are connected with the property for a certain subspace of the (complex) normal subspace $\gamma(z_0)$ to $\log \mathbf{Z}_f^{\text{reg}}$ at w_0 to be real. We refer to Figure 1 to visualize this : for w_0 to be a critical point for the restriction to $\pi_{\mathbb{R}}$ to $\log \mathbf{Z}_f^{\text{reg}}$ about w_0 , one needs such subpace to be *horizontal*, that is to have non imaginary component, which means *being real*.

Let us suppose for the sake of simplicity that $w_0 = 0$ and denote as T_0 the tangent plane at w_0 to $\log \mathbf{Z}_f^{\text{reg}}$. Keeping in mind its complex structure of *d*-complex plane, it is defined by a system of equations

$$\langle \varphi_j + i \psi_j, u + iv \rangle = 0 \quad (j = 1, ..., n - d),$$

¹⁴Such a 2*d*-dimension tangent space inherits a complex structure and thus can be understood as the complex tangent plane at w_0 to the *d*-dimensional complex manifold log $\mathbf{Z}_f^{\text{reg}}$.

where $\varphi_j, \psi_j \in \mathbb{R}^n$ and w = u + iv. Let L_{Re} and L_{Im} be the projections of T_0 on the real subpaces \mathbb{R}^n_u and \mathbb{R}^n_v . As soon as $(u, v) \simeq u + iv$ belongs to T_0 , so does (-v, u) (since T_0 is also a complex tangent space to a *d*-dimensional submanifold of \mathbb{C}^n_w). Therefore the two subpaces L_{Re} and L_{Im} coincide as \mathbb{R} -linear subspace is one identifies the copies \mathbb{R}^n_u and \mathbb{R}^n_v of \mathbb{R}^n . Therefore

$$T_0 \subset L_{\rm Re} + iL_{\rm Im} = L_{\rm Re} + iL_{\rm Re}.$$

The vectors $\varphi_j + i\psi_j$ lie in the complex normal space to $\log \mathbf{Z}_f^{\text{reg}}$ at 0, that is in $\gamma(z_0)$, and it remains to analyze whether they are real. Let us distinguish the two cases.

1. Suppose first that $2d \leq n$. We need to ensure that the tangent map Π_0 is not injective, which means that L_{Re} lies in a (2d-1)- \mathbb{R} -subspace such as

$$L'_{\text{Re}} := \{ u \in \mathbb{R}^n; \, \langle \alpha_j, u \rangle = 0 \text{ for } j = 1, ..., n - 2d + 1 \} \quad (\alpha_j \in (\mathbb{R}^n)^*, j = 1, ..., n - 2d + 1) \}$$

where the rank of the matrix α equals n - 2d + 1. Since $T_0 \subset L_{\text{Re}} + iL_{\text{Re}}$, one has

$$T_0 \subset \{w = u + iv; \langle \alpha_j, u + iv \rangle = 0 \text{ for } j = 1, ..., n - 2d + 1\}.$$

Since the complex subspace of the right-hand side is defined by linear equations with real coefficients, $\gamma(z_0)$ contains at least n - 2d + 1 independent real vectors.

2. Suppose now that 2d > n. We need to ensure that the tangent map Π_0 is not surjective, which means that L_{Re} lies in a \mathbb{R} - hyperplane $\{u \in \mathbb{R}^n; \langle \alpha, u \rangle = 0\}$ for some non-zero $\alpha \in (\mathbb{R}^n)^*$. One concludes as before that the real vector α belongs to $\gamma(z_0)$.

This discussion concludes the proof of the theorem \blacksquare

0.0.1 Examples

The contour of the archimedean amœba \mathscr{A}_f of an algebraic hypersurface in \mathbb{T}^n contains the boundary of this amœba, that is is definitively non empty. In fact, the Gauss logarithmic map reveals to be in this case a convenient tool to draw the amœba¹⁵.

The situation is indeed totally different for reduced algebraic complete intersections as soon as n > 3.

Let us focus on the case of one dimensional reduced algebraic intersections in \mathbb{T}^n , that is algebraic curves defined as a complete intersection in \mathbb{T}^n . The simplest example is that of complex lines as

$$\mathbf{Z}_{f} = \{ z \in \mathbb{T}^{n} ; z_{j} = a_{j} z_{1} + b_{j} \text{ for } j = 2, ..., n \} \quad (a_{j}, b_{j} \in \mathbb{T}).$$

$$(0.0.10)$$

One has in this case

$$\log_{|\mathbf{Z}_f|} = \left(\log |z_1|, \log |a_2 z_1 + b_1|, \cdots, \log |a_n z_1 + b_n| \right)_{|\mathbf{Z}_f|}$$

¹⁵We will propose in section ?? when n = 2 an alternative tool, namely the numerical approximation of the Ronkin function R_f .

Figure 2

Its jacobian matrix, when expressed in the complex conjugate coordinates z_1, \bar{z}_1 (z_1 being a complex parameter on Z_f) equals

$$\frac{D \log_{|\mathbf{Z}_f|}}{D(z_1, \bar{z}_1)} = \frac{1}{2} \begin{pmatrix} 1/z_1 & 1/\bar{z}_1 \\ 1/(z_2 + w_2) & 1/(\bar{z}_2 + \bar{w}_2) \\ \vdots & \vdots \\ 1/(z_n + w_n) & 1/(\bar{z}_n + \bar{w}_n) \end{pmatrix} \qquad (w_j = a_j/b_j = u_j + iv_j) \tag{0.0.11}$$

A point $(z_1, a_2z_1 + b_2, ..., a_nz_1 + b_n) \in \mathbb{Z}_f$ is critical for $\text{Log}_{|\mathbb{Z}_f}$ if and only if the rank of the matrix (0.0.11) is strictly less than 2. If $z_1 = x + iy$, this is equivalent to say that

$$\begin{aligned} xv_j - yu_j &= 0 \quad (2 \le j \le n) \\ (xv_k - yu_k) - (xv_\ell - yu_\ell) &= u_k v_\ell - u_\ell v_k \quad (2 \le k < \ell \le n). \end{aligned}$$

Such a system is consistent if and only if $u_k v_\ell - u_\ell v_k = 0$ for any $2 \le k < \ell \le n$, that is

$$\frac{a_k b_\ell}{a_\ell b_k} \in \mathbb{R}^n \quad (2 \le k < \ell \le n). \tag{0.0.12}$$

Thus, one can state the following result [1].

Proposition 0.0.1 Let $n \geq 3$. The amœba \mathscr{A}_f of the complex line of \mathbb{T}^n defined as (0.0.10) is non empty if and only if the compatibility conditions (0.0.12) are fulfilled. If it is the case, the contour of the archimedean amœba \mathscr{A}_f is the image of the real line

$$\{(x+iy, a_2(x+iy)+b_2, ..., a_n(x+iy)+b_n); v_2x-u_2y=0\} \subset \mathbf{Z}_f$$

by Log (where $a_j/b_j = u_j + iv_j, u_j, v_j \in \mathbb{R}$).

Examples 0.0.1

1. Let n = 3. The compatibility conditions (0.0.12) are not fulfilled when

$$\mathbf{Z}_f = \{ z \in \mathbb{T}^3 ; z_2 = z_1 + 1, z_3 = z_1 + 1 + i \}.$$

The contour is thus empty. The map Log realizes a (real) diffeomorphism between the real surface $(\mathbf{Z}_f)_{\mathbb{R}}$ and the amœba \mathscr{A}_f , which is then said to be *non-degenerated*. See Figure 2, left.

Figure 3

2. Let still n = 3. The compatibility conditions (0.0.12) are fulfilled when

$$\mathbf{Z}_{f} = \{ z \in \mathbb{T}^{3} ; z_{2} = z_{1} + 1, z_{3} = z_{1} + 1 \}$$

since here $a_2b_3/(a_3b_2) = 2 \in \mathbb{R}$. The amœba is a surface with boundary in \mathbb{R}^3 and each of its interior points has two pre-images *via* Log on \mathbf{Z}_f : the images in \mathbb{R}^3 *via* Log of the conjugate points $(z_1, z_1 + 1, z_1 + 2)$ and $(\bar{z}_1, \bar{z}_1 + 1, \bar{z}_1 + 2)$ (distinct when $z_1 \notin \mathbb{R}$) do coincide. The contour of \mathscr{A}_f is its topological boundary, which is realized as the image of the real line

$$\{(x+iy, (x+iy)+1, (x+iy)+2) \in \mathbf{Z}_f; y=0\} \subset \mathbf{Z}_f$$

by Log. The amœba is realized from the non-degenerated one by "collapsing". Note that at any point z_0 such that $\text{Log}(z_0)$ is on the contour, that is here the topological boundary, of the amœba \mathscr{A}_f , the image $\gamma(z_0)$, that is the normal complex space to $\log \mathbf{Z}_f$, contains a real plane. See Figure 3, right.

BIBLIOGRAPHY

- Bushueva N. A. and A. Tsikh. On amoebas of algebraic sets of higher codimension. Proc. Steklov Inst. Math, 279:52–53, 2012.
- [2] M. Andersson, H. Samuelsson Kalm, E. Wulcan, and A. Yger. Segre numbers, a generalized King formula, and local intersections. J. Reine Angew. Math., 728:105–136, 2017.
- [3] F. Babaee and J. Huh. A tropical approach to the strongly positive Hodge conjecture. Duke Math. J., 166 (14):2749–2813, 2017.
- [4] E. Bedford and B. A. Taylor The Dirichlet problem for a complex Monge-Ampère equation Inventiones math., 37: 1–44, 1976
- [5] C. A. Berenstein and A. Yger. Green currents and analytic continuation. Journal of Mathematic Analysis, 75:1–50, 1998.
- [6] G. M. Bergman. The logarithmic limit set of an algebraic variety. Trans. Amer. Math. Soc, 157:459–469, 1971.
- [7] J.B. Bost, H. Gillet, and C. Soulé. Heights of projective varieties and positive green forms. J. Amer. Math. Soc., 7:903–1027, 1994.
- [8] J. I. Burgos Gil, P. Philippon, and M. Sombra. Arithmetic geometry of toric varieties. Metrics, measures and heights, volume 360 of Astérisque. Société Mathématique de France, 2014.
- [9] E. Cattani and A. Dickenstein. A global view of residues in the torus. Algorithms for algebra (Eindhoven, 1996). J. Pure Appl. Algebra, 117/118:119–144, 1997.
- [10] A. Chambert-Loir and A. Ducros. Formes différentielles réelles et courants sur les espaces de Berkovich. arxiv.org/abs/1204.6277(2012).
- [11] D. Cox, J.B. Little and H. K. Schenck. *Toric varieties*. Graduate Studies in Mathematics, 124. American Mathematical Society, 2011.
- [12] V. I. Danilov The geometry of toric varieties. Russian Math. Surveys 33:2 (1978), 97-154.

- [13] G. de Rham. *Differentiable Manifolds*. Hermann, Paris, 1955.
- [14] J. P. Demailly. Complex analytic and differential geometry. Technical report, Institut Fourier, 2012. http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
- [15] H. El Mir. Sur le prolongement des courants positifs fermés. Acta Math., 153:1–45, 1984.
- [16] J. E. Fornaess and N. Sibony. Oka's inequality for currents and applications. Math. Ann., 301(3):399–419, 1995.
- [17] M. Forsberg, M. Passare, and A. Tsikh. Laurent determinants and arrangements of hypersurface amœbas. Advances in Math., 151:45–70, 2000.
- [18] W. Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1993.
- [19] I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, resultants and multidimensional determinants. Birkhäuser, Boston, 1994.
- [20] R. Gualdi. Heights of hypersurfaces in toric varieties. Journal of Algebraic Number Theory, 12:2403–2443, 2018.
- [21] M. M. Kapranov. A characterization of a-discriminantal hypersurfaces in terms of the logarithmic gauss map. *Math. Ann.*, 290:277–285, 1991.
- [22] A. Khovanskii. Newton polyedra and the genus of complete intersections. Functional Analysis and Its Applications, 12(1):38–46, 1978.
- [23] I. Krichever. Amoebas, Ronkin function and monge-ampere measures of algebraic curves with marked points. American Mathematical Society Translations-Series 2, Advances in the Mathematical Sciences, 234:265–278, 2014.
- [24] A. Lagerberg. Super currents and tropical geometry. Math. Z., 270(3-4):1011–1050, 2012.
- [25] P. Lelong. Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France., 85:239– 262, 1957.
- [26] B. Martin and D. Pochekutov. Discriminant and singularities of logarithmic gauss map, examples and application. J. Sib. Fed. Univ. Math. Phys., 6 (1):74–85, 2013.
- [27] G. Mikhalkin. Real algebraic curves, moment map and amoebas. Ann. of Math., 151(1):309– 326, 2000.
- [28] G. Mikhalkin. Decomposition into pairs-of-pants for complex algebraic hypersurfaces. *Topology*, 43(5):1035–1065, 2004.
- [29] L. Nilsson and M. Passare. Mellin transform of multivariate rational functions. Journal of Geometric Analysis, 23(1): 24-46, 2013.
- [30] M. Passare and H. Rullgård. Amœbas, Monge-Ampère measures, and triangulations of the newton polytope. Duke Math. J., 121(3):481–507, 2004.

- [31] M. Passare and A. Tsikh. Amoebas: their spines and contours. Contemporary Mathematics, 377:275–288, 2005.
- [32] K. Purbhoo. A nullstellensatz for amœbas. Duke Math. J., 141(3):407–445, 2008.
- [33] A. Rashkovski. Newton numbers and residual measures of plurisubharmonic functions. Ann. Polon. Math., 75(3):213–231, 2000.
- [34] L. Ronkin. On zeroes of almost periodic functions generated by holomorphic functions in a multicircular domain [in russian]. Complex Analysis in Modern Mathematics, Fazis, Moscow, pages 243–256, 2000.
- [35] Y. T. Siu. Analyticity of sets associated to lelong numbers and the extension of closed positive currents. *Inventiones Math.*, 27:53–156, 1974.
- [36] O. A. Viro. On basics concepts of tropical geometry. Proceedings of the Steklov Institute of Mathematics, 273:252–282, 2011.
- [37] A. Yger. Géométrie différentielle complexe. Technical report, Université Abdou Moumouni (Niamey, Niger), 2010. http://cel.archives-ouvertes.fr/docs/00/67/65/74/PDF/ Cours-Niamey.pdf.
- [38] A. Yger. Tropical geometry and amœbas. Technical report, Ecole Doctorale de Mathématiques et Informatique, 2013. http://cel.archives-ouverts.fr/cel-00728880.
- [39] A. Yger. Analyse Complexe, un regard analytique et geómétrique. Références Sciences. Ellipses, Paris, 2014.
- [40] W. Ossete Ingoba. A New Insight on Ronkin Functions or Currents. Complex Anal. Oper. Theory (2019) 13, pp 525–562.