Reliable Computation of the Singularities of the Projection in \mathbb{R}^3 of a Generic Surface of \mathbb{R}^4

Sény Diatta^{1,2}, Guillaume Moroz², and Marc Pouget²

¹ University Assane Seck of Ziguinchor, Sénégal, senydiatta@gmail.com
² Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France,

Firstname.Name@inria.fr.

Abstract

Computing efficiently the singularities of surfaces embedded in \mathbb{R}^3 is a difficult problem, and most state-of-the-art approaches only handle the case of surfaces defined by polynomial equations. Let F and G be C^{∞} functions from \mathbb{R}^4 to \mathbb{R} and $\mathcal{M} = \{(x, y, z, t) \in \mathbb{R}^4 | F(x, y, z, t) = G(x, y, z, t) = 0\}$ be the surface they define. Generically, the surface \mathcal{M} is smooth and its projection Ω in \mathbb{R}^3 is singular. After describing the types of singularities that appear generically in Ω , we design a numerically well-posed system that encodes them. This can be used to return a set of boxes that enclose the singularities of Ω as tightly as required. As opposed to stateof-the art approaches, our approach is not restricted to polynomial mapping, and can handle trigonometric or exponential functions for example.